Kontext 7.1: Laborführerschein Inhaltsfeld: Sicheres Arbeiten im Labor	3 Wochen	Prozess- bezogene Kompetenzen	Konzeptbezogene Kompetenzen Die Schüler und Schülerinnen
 Laborführerschein 1.1. Sicherheit 1.1.1. Sicherheitseinrichtungen 1.1.2. Gefahrensymbole 1.2. Versuchsprotokoll 1.3. Experimentierregeln 1.4. Brennerbenutzung 1.5. Laborgeräte 			Beschluß der Fachkonferenz: - Laborregeln, Gefahrstoffe, Gasbrenner - Bestellung der eigenen Schutzbrille
Kontext 7.2: Speisen und Getränke – alles Chemie? Inhaltsfeld: Stoffe und Stoffveränderungen	12 Wochen	Prozess- bezogene Kompetenzen	Konzeptbezogene Kompetenzen Die Schüler und Schülerinnen
Unterkontext: Was ist drin? Wir untersuchen Lebensmittel/ Getränke und Bedarfsgegenste (U Wochen) 1. Wir untersuchen Lebensmittel und Gebrauchsgegenstände auf ihre Stoffeis 1.6. Eigenschaften von Lebensmitteln/Gegenständen Geruch, Haptik, Aussehen, Geschmack 1.7. Identifizierung von "Stoffen" durch ihre Eigenschaften Z.B. Mehl, Salz, Zucker, Backpulver 1.8. Untersuchung von Stoffen Z.B. Löslichkeit, sauer/alkalisch, Wärmeleitfähigkeit, el. Leit 1.1.1. Aggregatzustände 1.1.2. Dichte 1.1.3. Löslichkeit 1.1.4. Erstellen eines Stoffsteckbriefs	genschaften	E1, E2, E3, E4, E5, E9,E10, B2, B7,B10, B11, K1, K3, K4, K5, K6, K9, K10	 [SM_01(I)]Zwischen Gegenstand und Stoff unterscheiden [SM_02(I)]Ordnungsprinzipien für Stoffe aufgrund ihrer Eigenschaften und Zusammensetzung nennen, beschreiben und begründen: Reinstoffe, Gemische; Elemente (z. B. Metalle, Nichtmetalle), Verbindungen (z. B. Oxide, Salze, organische Stoffe). [SM_04(I)]Stoffe aufgrund ihrer Eigenschaften identifizieren (z.B. Farbe, Geruch, Löslichkeit, elektrische Leitfähigkeit, Schmelz- und Siedetemperatur, Aggregatzustände, Brennbarkeit) [SM_08(I)]Stoffe aufgrund von Stoffeigenschaften (z. B. Löslichkeit, Dichte, Verhalten als Säure bzw. Lauge) bezüglich ihrer Verwendungsmöglichkeiten bewerten. [SM_16(I)]Einfache Modelle zur Beschreibung von Stoffeigenschaften nutzen.
			Beschluß der Fachkonferenz: - Wh. Aggregatzustände (s, l, g)

	-	· Teilchenmodell & Gemischee, Aggregatzustände
Unterkontext: Wir gewinnen Stoffe aus Lebensmitteln (6 Wochen) 2. Gemische und Reinstoffe & Einfache Teilchenvorstellung i. Lebensmittel als Gemische 2.1. Reinstoff-Gemisch 2.2. Heterogene-homogene Gemische ■ Einteilung von Gemischen 2.3. Teilchenmodell 2.4. Gemischarten 3. Stofftrennverfahren ■ Untersuchung eines Lebensm. als Gemisch (Speiseeis, Tee, Kaffee etc.) 3.1. Durchführen von Trennmethoden am Beispiel 1.1.5. Extrahieren, Sedimentieren, Aussortieren 1.1.6. Filtrieren 1.1.7. Eindampfen 1.1.8. Destillieren	E2, E4, E9, E10, K1, K5, B3, B7, B12	 [SM_02(I)]Ordnungsprinzipien für Stoffe aufgrund ihrer Eigenschaften und Zusammensetzung nennen, beschreiben und begründen: Reinstoffe, Gemische; Elemente (z. B. Metalle, Nichtmetalle), Verbindungen (z. B. Oxide, Salze, organische Stoffe). [SM_09(I)]Stoffeigenschaften zur Trennung einfacher Stoffgemische nutzen. [SM_19(I)]Lösevorgänge und Stoffgemische auf der Ebene einer einfachen Teilchenvorstellung beschreiben.
1.1.9. Technische Anwendung in einer Kläranlage		Beschluß der Fachkonferenz: Besuch der Kläranlage Hemer Becke
Unterkontext: Wir verändern Lebensmittel durch Kochen oder Backen (2 Wochen) 4. Chemie in der Küche - Kennzeichen chem. Reaktionen 4.1. Betrachtung von Vorgängen in der Küche (phänomenologisch) Braten, Backen, Kochen 4.2. Chemische Reaktionen (z.B. Karamellisieren) Synthese 4.3. Chemische Reaktionen im Labor Reaktionsschema 4.4. Energie bei chemischen Reaktionen Endotherm, exotherm Energiediagramme 4.5. Lebensmittel haben es in sich – Nahrung und Energie	E1, E4, K1, B7, B11	 [CR_01(I)]Stoffumwandlungen beobachten und beschreiben. [CR_02(I)]chemische Reaktionen an der Bildung von neuen Stoffen mit neuen Eigenschaften erkennen, und diese von der Herstellung bzw. Trennung von Gemischen unterscheiden. [CR_03(I)]chemische Reaktionen von Aggregatzustandsänderungen abgrenzen. [CR_05(I)]Stoffumwandlungen herbeiführen. [En_03(I)]Energie gezielt einsetzen, um den Übergang von Aggregatzuständen herbeizuführen (z. B. im Zusammenhang mit der Trennung von Stoffgemischen). [En_04(I)]Siede- und Schmelzvorgänge energetisch beschreiben. [SM_13(I)]die Aggregatzustandsänderungen unter Hinzuziehung der Anziehung von Teilchen deuten.

Kontext 7.3: Brände und Brandbekämpfung Inhaltsfeld: Stoff- und Energieumsätze bei chemischen Reaktionen	8 Wochen	Prozess- bezogene Kompetenzen	Konzeptbezogene Kompetenzen Die Schüler und Schülerinnen
Unterkontext: Feuer und Flamme: Brände und Brennbarkeit 1. Eine Kerzenflamme – naturwissenschaftlich betrachtet • Docht als Vergaser, Luft/Sauerstoffbedarf, Struktur der Fl. 1.1. Anzünden eines Lagerfeuers - Geschichte des Feuermachens • Lagerfeuer entzünden 1.1.1. Feuerzeuge als Zündquelle 1.1.2. Aktivierungsenergie 1.1.3. Brennstoff 1.2. Wissenschaftliche Betrachtung einer Grillparty • Brennstoff & "Luft" 1.2.1. Zerteilungsgrad 1.2.2. Grillanzünder – Flammtemperatur, Zündtemperatur 1.3. Zusammensetzung der Luft 1.3.1. Lavoisier und seine Sauerstofftheorie der Verbrennung • Experimentelle Ermittlung des Sauerstoffgehalts 1.3.2. Luft als Gasgemisch • Nachweisreaktion für Sauerstoff, CO ₂ und Wasserstoff 1.4. Verbrennung – Reaktion mit Sauerstoff • Reaktion mit Sauerstoff = Oxidation 1.4.1. Oxide 1.4.2. Oxidation von Metallen 1.4.3. Reaktionsschemata Beschluß der Fachkonferenz: • Daltons Aussagen zu seinem Atommodell (Buch S. 48) auf das Teilchenmodell übertragerelative Atommasse (in u) • Elementsymbole kennen und die Symbole für die wichtigsten Elemente nennen können (z.B. C. H. O. N. Mg, Al, S. Fe, Cu, Ag, Au, Pb Buch S. 48).		E1, E4, E9, K1, K2, K3, B7	 CR_01(I)]Stoffumwandlungen beobachten und beschreiben. [CR_05(I)] Stoffe aufgrund ihrer Zusammensetzung und Teilchenstruktur ordnen. [CR_07(I)]Stoffumwandlungen in Verbindung mit Energieumsätzen als chemische Reaktion deuten. [CR_09(I)] den Erhalt der Masse bei chemischen Reaktionen durch die konstante Atomanzahl erklären. [CR_10(I)] chemische Reaktionen als Umgruppierung von Atomen beschreiben. [CR_14]chemische Reaktionen zum Nachweis chemischer Stoffe benutzen (Glimmspanprobe, Knallgasprobe, Kalkwasserprobe, Wassernachweis). [CR_15(I)] einfache Atommodelle zur Beschreibung chemischer Reaktionen nutzen. [CR_15(I)] Verbrennungen als Reaktionen mit Sauerstoff (Oxidation) deuten, bei denen Energie freigesetzt wird. [CR_22(I)] das Verbrennungsprodukt Kohlenstoffdioxid identifizieren und dessen Verbleib in der Natur diskutieren. [En_10(I)] erläutern, dass zur Auslösung einiger chemischer Reaktionen Aktivierungsenergie nötig ist, und die Funktion eines Katalysators deuten. [SM_02(I)] Ordnungsprinzipien für Stoffe aufgrund ihrer Eigenschaften und Zusammensetzung nennen, beschreiben und begründen: Reinstoffe, Gemische; Elemente (z. B. Metalle, Nichtmetalle), Verbindungen (z. B. Oxide, Salze, organische Stoffe). [SM_06(I)] Atome als kleinste Teilchen von Stoffen benennen.

Unterkontext: Feuer – bekämpft und genutzt 2. Brandentstehung – Brandbekämpfung 2.1. Voraussetzung für Brandentstehung 2.2. Brandbekämpfung 2.2.1. Kühlen, Brennstoffentzug, Sauerstoffentzug ■ Endotherme & exotherme Reaktionen (Wh.) 2.3. Feuerlöscher 2.3.1. Verteilung im Schulgebäude Beschluß der Fachkonferenz: - Kooperation mit der Hemeraner Feuerwehr (Brandschutzerziehung, Löschübungen)	E2, E9, E10, B2, B3, B11	*	[SM_7] energetische Erscheinungen bei exothermen chemischen Reaktionen auf die Umwandlung eines Teils der in Stoffen gespeicherten Energie in Wärmeenergie zurückführen, bei endothermen Reaktionen den umgekehrten Vorgang erkennen. [En_01(I)] chemische Reaktionen energetisch differenziert beschreiben, z.B. mit Hilfe eines Energiediagramms [En_05(I)] erläutern, dass bei einer chemischen Reaktion immer Energie aufgenommen oder abgegeben wird. [En_08(I)] konkrete Beispiele von Oxidationen (Reaktionen mit Sauerstoff) und Reduktionen als wichtige chemische Reaktionen benennen sowie deren Energiebilanz qualitativ darstellen. [En_13(I)] vergleichende Betrachtungen zum Energieumsatz durchführen
 Unterkontext: Verbrannt – aber nicht vernichtet 3. Müll verbrennen – und der ist weg? ■ z.B. Eisenwolleversuch → Masse nimmt bei der Verbrennung zu vgl. m. Holzkohleverbrennung 3.1. Gesetz von der Erhaltung der Masse ■ z.B. Streichholzversuch 3.2. Element und Verbindung ■ Zerlegung einer einfachen Verbindung (z.B. Silberoxid) 3.3. Analyse und Synthese 3.4. Atome – Grundbausteine aller Stoffe 3.4.1. Daltons Atommodell 	E2, E3, E7, E10 K4, B7	*	[CR_12(I)] chemische Reaktionen durch Reaktionsschemata in Wort-(und evtl. in Symbolformulierungen unter Angabe des Atomanzahlenverhältnisses beschreiben und die Gesetzmäßigkeit der konstanten Atomanzahlverhältnisse) erläutern.

Kontext 7.4: Aus Rohstoffen werden Gebrauchsgegenstände Inhaltsfeld: Metalle und Metallgewinnung	8 Wochen	Prozess- bezogene Kompetenzen	Konzeptbezogene Kompetenzen Die Schüler und Schülerinnen
Unterkontext: Kupfer – ein wichtiges Gebrauchsmetall 1. Kupfer – Untersuchung der Eigenschaften 1.1. Kupfergewinnung 1.2. Vom Metalloxid zum Metall – Reduktionen 1.3. Kupfergehalt von Kupferoxid 1.3.1. Reduktion von Kupferoxid 1.3.2. Konstante Massenverhältnisse 1.3.3. Redox-Reaktionen 1.4. Wh. Atome als Grundbausteine 1.4.1. Chemische Reaktionen in Daltons Atommodell 1.4.2. Wie schwer ist ein Atom?		E1, E4, K1, K2, K4, B7	 [CR_12(I)] chemische Reaktionen durch Reaktionsschemata in Wort- und evtl. in Symbolformulierungen unter Angabe des Atomzahlenverhältnisses beschreiben und die Gesetzmäßigkeit der konstanten Atomzahlverhältnisse erläutern [CR_16(I)] Redoxreaktionen nach dem Donator-Akzeptor-Prinzip als Reaktionen deuten, bei denen Sauerstoff abgegeben und vom Reaktionspartner aufgenommen wird. [En_08(I)] Konkrete Beispiele von [Oxidationen (Reaktionen mit Sauerstoff) und] Reduktionen als wichtige chemische Reaktionen benennen sowie deren Energiebilanz qualitativ darstellen
Unterkontext: Eisenerz und Schrot als Grundstoffe der Stahlgewinnung 2. Eisen, universeller Werkstoff 2.1. Vom Eisenerz zum Roheisen 2.1.1. Entstehung von Eisenerz 2.1.2. Entstehung und Verkokung von Steinkohle 2.1.3. Hochofenprozess 2.2. Thermitverfahren 2.3. Redox-Reihe – Wer reduziert wen? Unterkontext: Schrott – Abfall oder Rohstoff 3. Recycling/ Metallrecycling		E5, E6, E7, K5, K7, K10, B5	 [CR_12(I)] chemische Reaktionen durch Reaktionsschemata in Wort- und evtl. in Symbolformulierungen unter Angabe des Atomzahlenverhältnisses beschreiben und die Gesetzmäßigkeit der konstanten Atomzahlverhältnisse erläutern [CR_16(I)] Redoxreaktionen nach dem Donator-Akzeptor-Prinzip als Reaktionen deuten, bei denen Sauerstoff abgegeben und vom Reaktionspartner aufgenommen wird. [CR_23(II)] einen Stoffkreislauf als eine Abfolge verschiedener Reaktionen deuten. [CR_24(I)] Kenntnisse über Reaktionsabläufe nutzen, um die Gewinnung von Stoffen zu erklären (z. B. Verhüttungsprozesse). [CR_25(II)] wichtige technische Umsetzungen chemischer Reaktionen vom Prinzip her erläutern (z. B. Eisenherstellung, Säureherstellung, Kunststoffproduktion). [En_08(I)] Konkrete Beispiele von [Oxidationen (Reaktionen mit Sauerstoff) und] Reduktionen als wichtige chemische Reaktionen benennen sowie deren Energiebilanz qualitativ dar-

Kontext 7.5: Nachhaltiger Umgang mit Ressourcen Inhaltsfeld: Luft und Wasser	4-8 Wochen	Prozess- bezogene Kompetenzen	Konzeptbezogene Kompetenzen Die Schüler und Schülerinnen können
Unterkontext: Bedeutung des Wassers als Trink- und Nutzwasser; 1. Wasser 1.1. Wasser als Lebensraum 1.2. Wassernutzung 1.3. Trinkwasser (eher Diff) 1.4. Kläranlagen (Wh. Trennmethoden) 1.5. Wasser als Lösungsmittel 1.6. Saure und alkalische Lösungen 1.6.1. Rotkohlindikator 1.6.2. Wasser als Oxid 1.7. Nachweis von Wasserstoff 1.8. Knallgasreaktion 1.8.1. Anwendungen von Wasserstoff		E1, E2, E4, K1, K4, B10	 ❖ [CR_15 (I)] Verbrennungen als Reaktionen mit Sauerstoff (Oxidation) deuten, bei denen Energie freigesetzt wird. ❖ [CR_18] die Umkehrbarkeit chemischer Reaktionen am Beispiel der Bildung und Zersetzung von Wasser beschreiben. ❖ [CR_12(I)] chemische Reaktionen durch Reaktionsschemata in Wort(- und evtl. in Symbolformulierungen unter Angabe des Atomanzahlenverhältnisses beschreiben und die Gesetzmäßigkeit der konstanten Atomanzahlverhältnisse)erläutern. ❖ [SM_09(I)] Stoffeigenschaften zur Trennung einfacher Stoffgemische nutzen. ❖ [SM_11(I)] Die Teilchenstruktur ausgewählter Stoffe/Aggregate mithilfe einfacher Modelle beschreiben (Wasser, Sauerstoff, Kohlenstoffdioxid). ❖ [SM_19(I)] Lösevorgänge und Stoffgemische auf der Ebene einer einfachen Teilchenvorstellung beschreiben.
 Unterkontext: Luft – ein Lebenswichtiges Gasgemisch 2. Luft 2.1. Atmosphäre im Wandel 2.2. Luft zum Leben 2.3. Schadstoffe in der Luft 2.4. Saurer Regen Unterkontext: Treibhauseffekt durch menschliche Eingriffe 2.5. Luftverschmutzung, saurer Regen 		E3, E6, E8, E11, B9, K2, K5, K7, K10	 [CR_14] chemische Reaktionen zum Nachweis chemischer Stoffe benutzen (Glimmspanprobe, Knallgasprobe, Kalkwasserprobe, Wassernachweis). [CR_23(I)] Das Verbrennungsprodukt Kohlenstoffdioxid identifizieren und dessen Verbleib in der Natur diskutieren. [CR_19(I)] Saure (und alkalische) Lösungen mit Hilfe von Indikatoren nachweisen. [En_15(I)] beschreiben, dass die Nutzung fossiler Brennstoffe zur Energiegewinnung einhergeht mit der Entstehung von Luftschadstoffen und damit verbundenen negativen Umwelteinflüssen (z. B. Treibhauseffekt, Wintersmog).

Kontext 8.1: Elementfamilien, Atombau und Periodensystem Inhaltsfeld:	10-12 Wochen	Prozess- bezogene Kompetenzen	Konzeptbezogene Kompetenzen Die Schüler und Schülerinnen können
Unterkontext: "Metalle –auf der Suche nach dem Stein der Weisen" oder "Metalldiebstahl" 1. Eigenschaften von Metallen 1.1.1.Experimenteller Vergleich mit Nichtmetallen 1.2. Elemente können ähnlich sein 2. Metalle vs. Nichtmetalle (S. 180) 2.1. Gruppenpuzzle "Atombau" (Eilks) 2.1.1.Kern-Hülle-Modell 2.1.2.Elementarteilchen 2.1.3.Schalenmodell und Besetzungsschema 2.1.4.Oktettregel 2.1.5.Atomaufbau und Periodensystem 2.1.6.Atomare Masse, Isotope 2.2. Metallbindung und Metalleigenschaften		E1 – E9, B5, B6, B8, K1 – K6, K9, K10	 \$ [SM_18(I)]Atome mithilfe eines einfachen Kern-Hülle-Modells darstellen und Protonen, Neutronen als Kernbausteine benennen sowie die Unterschiede zwischen Isotopen erklären \$ [SM_20(II)]Chemische Bindungen (Ionenbindung, Elektronenpaarbindung) mithilfe geeigneter Modelle erklären und Atome mithilfe eines differenzierteren Kern-Hülle-Modells beschreiben \$ [SM_03(II)]Aufbauprinzipien des Periodensystems der Elemente beschreiben und als Ordnungs- und Klassifikationsschema nutzen

Unterkontext: Die Erde mit der wir leben			
 3.1. Atomsymbole 3.2. Die Elementfamilie der Alkalimetalle 3.2.1.Reaktionen der Alkalimetalle im Vergleich 3.2.2.Bildung von Oxiden und Hydroxiden 3.2.3.Identifizierung der Alkalimetalle durch Flammenfärbung 3.3. Die Elementfamilie der Erdalkalimetalle 3.3.1.Eigenschaften und Reaktionen der Erdalkalimetalle 3.4. Das Mol – Zählen durch Wiegen 3.5. Die molare Masse – Stoffmengen messen 3.6. Experimentelle Bestimmung einer Verhältnisformel (z. B LiOH) 3.6.1.Valenzschale und Verhältnisformeln 3.6.2.Gesetz der konstanten Proportionen 	E1 – E5, E7, E8	*	[CR_19(I)] saure und alkalische Lösungen mit Hilfe von Indikatoren nachweisen [CR_21(II)]Die alkalische Reaktion von Lösungen auf das Vorhandensein von Hydroxid-Anionen zurückführen [CR_13(II)]Stoffe durch Formeln und Reaktionen durch Reaktionsgleichungen beschreiben und dabei in quantitativen Aussagen die Stoffmenge Benutzen und einfache stöchiometrische Berechnungen durchführen
 3.7. Halogene 3.7.1. Chlor – ein aggressives Nichtmetall 3.7.2. Die Elementfamilie der Halogene 3.7.3. Moleküle – Molekülformeln 3.7.4. Gesetz von Avogadro 3.7.5. Molares Volumen 3.7.6. Halogene als Salzbildner 3.7.7. Reaktionsgleichungen einrichten 3.7.8. Nomenklatur der Salze (binäre Verbindungen) 3.7.9. Halogenwasserstoffe 4. Das Periodensystem 4.1. Das PSE von Mendelejeff 4.2. Das PSE heute 	B6, B7, K1 – K5, K9	*	[SM_17(II)]den Zusammenhang zwischen Stoffeigenschaften und Bindungsverhältnissen (Ionenbindung, Elektronenpaarbindung und Metallbindung) erklären

Kontext 8.2: Die Welt der Mineralien Inhaltsfeld: Ionenbindung und Ionenkristalle 10 – 12 Wochen	Prozess- bezogene Kompetenzen	Konzeptbezogene Kompetenzen Die Schüler und Schülerinnen können
Unterkontext: z. B. Salzbergwerke (Alternativen: Aus tiefen Quellen − Mineralwasser, Streusalz und Dünger) 1. Gewinnung von Kochsalz (Wh) ■ Leitfähigkeit von Salzlösungen 2. Mineralwasser als Ionenlösung 2.1. Leitfähigkeit und Leitfähigkeitsmessung 2.2. Ionenwanderung 2.3. Gefrierpunktserniedrigung durch Streusalz 2.4. Ionenbildung und Ionenbindung 2.4.1.Ionen und Edelgaselektronenkonfiguration 2.5. Ionenladung und Periodensystem 3. Chemische Formelschreibweise und Reaktionsgleichungen 3.1. Ionen im richtigen Verhältnis 3.1.1.Elektroneutralität 3.1.2.Nomenklatur von Salzen; Erweiterung auf komplexe Anionen 3.1.3.Nachweisreaktionen - Ionennachweise (Anionen) 4. Mineralien und Salze als Ionenverbindungen 4.1. Ionenbindung und Anordnung im Kristall 4.2. Kugelpackung und Raumgittermodell des Ionenkristalls 4.3. Züchten von Kristallen 4.4. Lösung und Kristallisation/Gesättigte Lösung	E1 – E9, B6, B7, K1 – K6, K9	 \$ [SM_20(II)]chemische Bindungen (Ionenbindung, Elektronenpaarbindung) mithilfe geeigneter Modelle erklären und Atome mithilfe eines differenzierteren Kern-Hülle-Modells beschreiben \$ [CR_04(II)]Stoff- und Energieumwandlungen als Veränderung in der Anordnung von Teilchen und als Umbau chemischer Bindungen erklären \$ [CR_08(II)]mit Hilfe eines angemessenen Atommodells und Kenntnissen des Periodensystems erklären, welche Bindungen bei chemischen Reaktionen gelöst werden und welche entstehen \$ [SM_12(II)]Zusammensetzung und Strukturen verschiedener Stoffe mit Hilfe von Formelschreibweisen darstellen (Summen-/ Strukturformeln, Isomere) \$ [SM_17(II)]den Zusammenhang zwischen Stoffeigenschaften und Bindungsverhältnissen (Ionenbindung, Elektronenpaarbindung und Metallbindung) erklären \$ [SM_07(II)]die Vielfalt der Stoffe und ihrer Eigenschaften auf der Basis unterschiedlicher Kombinationen und Anordnungen von Atomen mit Hilfe von Bindungsmodellen erklären (z. B. Ionenverbindungen, anorganische Molekülverbindungen, polare – unpolare Stoffe, Hydoxylgruppe als funktionelle Gruppe) \$ [SM_03(II)]Aufbauprinzipien des Periodensystems der Elemente beschreiben und als Ordnungs-und Klassifikationsschema nutzen, Haupt- und Nebengruppen unterscheiden

Kontext 8.3: Wasser- mehr als ein einfaches Lösemittel Inhaltsfeld: Unpolare und polare Elektronenpaarbindung Wochen Wochen	Prozess- bezogene Kompetenzen	Konzeptbezogene Kompetenzen Die Schüler und Schülerinnen können
Unterkontext: Für jeden Fleck die richtige Lösung 1. Reinigen – auch ohne Wasser 1.1. Lösemittel sind Molekülverbindungen 1.1.1.Vergleich mit Salzen 1.1.2.Molekülformeln 2. Was Atome in Molekülen zusammenhält 2.1. Elektronenpaarbindung 2.2. Bindungsenergie 2.3. Edelgaselektronenkonfiguration 2.4. Lewis-Formeln 2.5. Einfach-, Zweifach und Dreifachbindungen 3. Moleküle – dreidimensional 3.1. Elektronenpaarabstoßung 3.2. Tetraeder 4. Hexan- & Acetonmoleküle – räumlicher Bau 5. Elektronegativität & PSE 6. Hexan als apolares Molekül 6.1. Van der Waals Bindungen 6.2. Lipophilie und Hydrophobie 7. Aceton als Dipol 7.1. Polare Atombindung 7.2. Dipolmoleküle 7.3. Teilladungen 7.4. Dipol-Dipol-Bindungen 7.5. Hydrophilie 8. Beseitigung von "Ölunfällen" (Magischer Sand)	E1 – E9 B1, B2, B3, B6, B7, B12 K1 – K6, K9 K10	 [SM_07(II)]die Vielfalt der Stoffe und ihrer Eigenschaften auf der Basis unterschiedlicher Kombinationen und Anordnungen von Atomen mit Hilfe von Bindungsmodellen erklären (z. B. Ionenverbindungen, anorganische Molekülverbindungen, polare – unpolare Stoffe, Hydoxylgruppe als funktionelle Gruppe) [SM_13(II)]Kräfte zwischen Molekülen und Ionen beschreiben und erklären [SM_14(II)]Kräfte zwischen Molekülen als Van-der-Waals-Kräfte Dipol-Dipol-Wechselwirkungen und Wasserstoffbrückenbindungen bezeichnen [SM_21(II)]mithilfe eines Elektronenpaarabstoßungsmodells die räumliche Struktur von Molekülen erklären [CR_08(II)]mit Hilfe eines angemessenen Atommodells und Kenntnissen des Periodensystems erklären, welche Bindungen bei chemischen Reaktionen gelöst werden und welche entstehen [SM_17(II)den Zusammenhang zwischen Stoffeigenschaften und Bindungsverhältnissen (Ionenbindung, Elektronenpaarbindung und Metallbindung) erklären [CR_27(II)] Prozesse zur Bereitstellung von Energie erläutern

Unterkontext: Wasser – alltäglich und doch außergewöhnlich		
9. Das Salz in der Suppe – Modellbetrachtung		
9.1. Der Lösungsvorgang	E1 – E9	
9.2. Gitterenergie und Hydratationsenergie (Wärmekissen und Kühlpads/Kühlkompressen)9.3. Hydrathülle	B1, B2, B3, B6, B7, B10, B12	❖ [SM_13(II)]die bei chemischen Reaktionen umgesetzte Energie quantitativ einordnen
9.4. Salzhydrate 9.5. Stoffmengenkonzentration 10. Wasser – eine außergewöhnliche Flüssigkeit 10.1. Eigenschaften von Wasser 10.2. Wasserstoffbrückenbildung 10.3. Dichteanomalie 10.4. Schmelz- und Siedetemperatur 10.5. Eisstruktur 11. Wasser als Wärmespeicher/Salzlösungen als Wärmespeicher 11.1. Wärmekapazität	K1 – K6, K9 K10	[SM_14(II)]Kräfte zwischen Molekülen als Van-der-Waals-Kräfte Dipol-Dipol-Wechselwirkungen und Wasserstoffbrückenbindungen bezeichnen

Kontext 9.1: Reinigungsmittel, Säuren und Laugen im Alltag Inhaltsfeld: Saure und alkalische Lösungen Woch	hazagana	Konzeptbezogene Kompetenzen Die Schüler und Schülerinnen
Unterkontext: Säuren & Laugen – Werkzeuge nicht nur für Chemiker 1. Säuren und Laugen in Reinigungsmitteln 1.1. Indikatoren 1.2. Saure und alkalische Reiniger 2. Essigreiniger 2.1. Entfernen von Kalk 2.2. Essigsäure 3. Salzsäure – im Labor die wichtigste Säure 3.1. Chlorwasserstoff 3.2. Lösung von HCl in Wasser 4. Säuren und saure Lösungen 4.1. Indikatorreaktion 4.2. Leitfähigkeit 4.3. Reaktionen 5. Nur eine Frage der Konzentration? 5.1. Starke und schwache Säuren 5.2. Mehrprotonige Säuren 6. Kalk 6.1. Wasserhärte 7. Rohrreiniger 7.1. Wirkung & Gefahren 8. Natriumhydroxid und Natronlauge 8.1. Lösung in Wassser 8.2. Hydroxide	E01-E6, E8, E9, K1, K3, K5, K6, K7, K9 B1, B2, B4, B7, B9, B12	 [CR_19(I)]saure und alkalische Lösungen mit Hilfe von Indikatoren nachweisen [CR_20(II)]Säuren als Stoffe einordnen, deren wässrige Lösungen Wasserstoffionen enthalten. [CR_21(II)]die alkalische Reaktion von Lösungen auf das Vorhandensein von Hydroxid-Ionen zurückführen [CR_22(II)]den Austausch von Protonen als Donator-Akzeptor-Prinzip einordnen [CR_13(II)]Stoffe durch Formeln und Reaktionen durch Reaktionsgleichungen beschreiben und dabei in quantitativen Aussagen die Stoffmenge Benutzen und einfache stöchiometrische Berechnungen durchführen

Unterkontext:	Haut und Haar – alles im neutralen Bereich		*	
9. pH-Wert i	n Mitteln des täglichen Gebrauchs		*	
9.1. pH-V	Verte im Alltag		,	
10. Der pH-W	Vert		*	
10.1.	pH-Skala		*	[CR_19(I)]saure und alkalische Lösungen mit Hilfe von
10.2.	Definition des pH-wertes			Indikatoren nachweisen
11. Neutralisationsreaktion			*	[CR_20(II)]Säuren als Stoffe einordnen, deren wässrige
11.1.	Teilchenverhältnis	E01-E6, E8,		Lösungen Wasserstoffionen enthalten.
11.2.	Anwendungen in der Technik/Haushalt	E01-E0, E6, E9,	*	[CR_21(II)]die alkalische Reaktion von Lösungen auf
12. Titration		K1, K3, K5,		das Vorhandensein von Hydroxid-Ionen zurückführen
12.1.	Herstellung von Maßlösungen (Ansetzen von Lösungen mit der Konzentration c)	K6, K7, K9 B1, B2, B4, B7, B9, B12	*	[CR_22(II)]den Austausch von Protonen als Donator- Akzeptor-Prinzip einordnen
12.2.	Titration und Auswertung der Messergebnisse	B7, B2, B12		[CR_13(II)]Stoffe durch Formeln und Reaktionen
13. Säure-Bas	13. Säure-Base-Theorien			durch Reaktionsgleichungen beschreiben und dabei in
13.1.	Arrhenius			quantitativen Aussagen die Stoffmenge Benutzen und einfache stöchiometrische Berechnungen durchführen
13.2.	Brönstedt			
14. Protonen	auf Wanderschaft			
14.1.	Protonenübertragungsreaktionen			
14.2.	Donator-Akzeptor			
14.3.	Säure/Base-Reaktion			

Kontext 9.2: Metalle schützen und veredeln Inhaltsfeld: Freiwillige und erzwungene Elektronenübertragungen	Prozess- bezogene Kompetenzen	Konzeptbezogene Kompetenzen Die Schüler und Schülerinnen
Unterkontext (z.B.): Herstellung eines Wasserhahns 1. Sammeln von Fragen: • z.B. Placemat (z.B. Was ist ein Metall? Woraus besteht der Wasserhahn? Warum ist er mit einer silberglänzenden Schicht überzogen? Warum die Chromschicht? Wie bekommt man die dünne Chromschicht auf das Messing? Wie stellt man den Strom her?) 2. Dem Rost auf der Spur - Korrosion 2.1. Rosten als Reaktion von Eisen und Sauerstoff 2.1.1. Korrosion - Definition und Phänomen 2.2. Oxidationen ohne Sauerstoff • Versuche zu Elektronenübertragungen (z.B. Metall-Halogen) 2.3. Redoxreaktionen als Elektronenübertragungs-Reaktionen • Donator, Akzeptor, Reduktion, Oxidation, Oxidations- Reduktionsmittel 2.4. Unedel – dennoch stabil 2.4.1. Edle und unedle Metalle • Versuche zur Fällungsreihe • Reaktionen zwischen Metallatomen und Metallionen 2.5. Wiederholung: Eigenschaften & Aufbau von Metallen 2.6. Formen der Korrosion 2.6.1. Säurekorrosion oder Sauerstoffkorrosion (besser im Kontext: Sauerstoff) 3. Metallüberzüge: nicht nur zum Schutz vom Korrosion 3.1. Korrosionsschutz 3.1.1. Passiver Korrosionsschutz 3.1.2. Schutz durch andere Metalle, Opferanoden, Passivierung 3.1.3. Vergleich Eisen mit Zinn-/Zinküberzug • z.B. Versuch mit Konservendosen & Eisenindikator 3.2. Elektrolyse – Elektrischer Anstrich 3.2.1. Versuch mit Zinkbromid/-iodid 3.2.2. Beispiel einer einfachen Elektrolyse 3.3. Galvanik • z.B. Versilbern mit Thioharnstoff-Silberionenlösung	E01-E6, E8, E9, K1, K3, K5, K6, K7, K9 B1, B2, B4, B7, B9, B12	 [CR_17(II)]elektrochemische Reaktionen (Elektrolyse und elektrochemische Spannungsquellen) nach dem Donator-Akzeptor-Prinzip als Aufnahme und Abgabe von Elektronen deuten, bei denen Energie umgesetzt wird [En_06(II)]erläutern, dass Veränderungen von Elektronenzuständen mit Energieumsätzen verbunden sind. [En_09(II)]die Umwandlung von chemischer in elektrische Energie und umgekehrt von elektrischer in chemische Energie bei elektrochemischen Phänomenen beschreiben und erklären.

Kontext 9.3: Zukunftssichere Energieversorgung Inhaltsfeld: Energie aus chemischen Reaktionen 8 Wochen	Prozess- bezogene Kompetenzen	Konzeptbezogene Kompetenzen Die Schüler und Schülerinnen
 Unterkontext: Energie aus chemischen Reaktionen (3-4 Wochen) Strom ohne Steckdose – Energie für die Galvanik 3.4. Beispiel einer einfachen Batterie Präparation von Alkali-Mangan-Batterien 3.4.1.Funktion von Alk.Mn-Batterien 3.5. Akkumulatoren 3.5.1.Blei-Akku 3.5.2.Akkus in Smartphonres etc (evtl. als Gruppenarbeit erarbeiten) 3.6. Brennstoffzelle 3.6.1.Funktion und Anwendung 	E01-E6, E8, E9, K1, K3, K5, K6, K7, K9, B1, B2, B4, B7, B9, B12	 * [CR_18]die Umkehrbarkeit chemischer Reaktionen am Beispiel der Bildung und Zersetzung von Wasser beschreiben * [En_13(I)]vergleichende Betrachtungen zum Energieumsatz durchführen. * [En_02(II)] die bei chemischen Reaktionen umgesetzte Energie quantitativ einordnen. * [En_14(II)] das Funktionsprinzip verschiedener chemischer Energiequellen mit angemessenen Modellen beschreiben und erklären (z. B. einfache Batterie, Brennstoffzelle). * [En_16(II)]die Nutzung verschiedener Energieträger (Atomenergie, Oxidation fossiler Brennstoffe, elektrochemische Vorgänge, erneuerbare Energien) aufgrund ihrer jeweiligen Vor- und Nachteile kritisch beurteilen.
 Unterkontext: Mobilität – die Zukunft des Autos (4 Wochen) 4. Entstehung und Förderung von Erdöl und Erdgas 5. Erdölraffination 6. Alkane als Erdölprodukte 6.1. Homologe Reihe 6.2. Bau des Kohlenstoffatoms & Raumstruktur organischer Moleküle 7. Vielfalt durch Verzweigung 7.1. Nomenklatur 7.2. Van-der-Waals-Kräfte 8. Zusammensetzung des Erdöls 9. Cracking und Reforming 10. Wärmegewinung aus chemischer Energie 10.1. Mischungen (S.347) 	E01-E6, E8, E9, K1, K3, K5, K6, K7, K9 B1, B2, B4, B7, B9, B12	 ❖ [CR_27(II)]Prozesse zur Bereitstellung von Energie erläutern ❖ [En_02(II)]die bei chemischen Reaktionen umgesetzte Energie quantitativ einordnen.

Unterkontext: Nachwachsende Rohstoffe 11. Regenerative Kraftstoffe 11.1. Bioethanol oder Biodiesel 11.2. Biogas 11.3. Energiebilanzen	E01-E6, E8, E9, K1, K3, K5, K6, K7, K9,B1, B2, B4, B7, B9, B12, B13	*	[SM_10(II)]Kenntnisse über Struktur und Stoffeigenschaften zur Trennung, Identifikation, Reindarstellung anwenden und zur Beschreibung großtechnischer Produktion von Stoffen nutzen. [En_02(II)]die bei chemischen Reaktionen umgesetzte Energie quantitativ einordnen. [CR_25(I)]Kenntnisse über Reaktionsabläufe nutzen, um die Gewinnung von Stoffen zu erklären (z. B. Verhüttungsprozesse)
---	---	---	--

Kontext 9.4: Der Natur abgeschaut - 4 Inhaltsfeld: Ausgewähltes Thema der org. Chemie Wochen	Prozess- bezogene Kompetenzen	Konzeptbezogene Kompetenzen Die Schüler und Schülerinnen
 Unterkontext: Vom Traubenzucker zum Alkohol 1. Typ. Eigenschaften org. Verbindungen 2. Funktionelle Gruppen: Hydroxyl- und Carboxylgruppe 3. Katalysatoren 	E01-E6, E8, E9, K1, K3, K5, K6, K7, K9 - B1, B2, B4, B7	 [SM_12(II)]Zusammensetzung und Strukturen verschiedener Stoffe mit Hilfe von Formelschreibweisen darstellen (Summen –/Strukturformeln, Isomere). Findet ständig statt. [CR_28(II)]das Schema einer Veresterung zwischen Alkoholen und Carbonsäuren vereinfacht erklären
<u>Unterkontext: Moderne Kunststoffe</u>4. Struktur- Eigenschaftsbeziehungen		❖ [CR_11(II)]Möglichkeiten der Steuerung chemischer Reaktionen durch Variation von Reaktionsbedingungen beschreiben.
	E01-E6, E8, E9, K1, K3, K5, K6, K7, K9 B1, B2, B4, B7, B9, B12, B13	 [CR_26(II)]wichtige technische Umsetzungen chemischer Reaktionen vom Prinzip her erläutern (z. B. Eisenherstellung, Säureherstellung, Kunststoffproduktion). [SM_14(II)]Kräfte zwischen Molekülen als Van-der-Waals-Kräfte Dipol-Dipol-Wechselwirkungen und Wasserstoffbrückenbindungen bezeichnen.
		❖ [En_11(II)]den Einsatz von Katalysatoren in technischen oder biochemischen Prozessen beschreiben und begründen.